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ABSTRACT 

The boundary perturbation method, suggested by Zhang and, independently, 
by Chatard-Moulin, Cooper, and their colleagues, is employed to the wakefield cal­
culations for geometrical discontinuities in accelerators. The results are compared 
with that obtained from the mesh caculations using TBCI. [1] 'When the perturba­
tion is small and the geometry is suitable for TBCI, the agreement is good. The 
discrepancies observed in other cases are also discussed. 

1. INTRODUCTION 

It is known that wakefields play an important role in designing modern large 
accelerators. There are several existing methods to estimate wakefields (or their 
counterparts in the frequency-domain, impedances), each with its own limitations. [2] 
The analytic formulae, either in a closed form or expressed as a series expansion 
obtained from the field matching method, work only for a few special simple cases. 
The numerical method, e. g., mesh calcualtions using TBCI, works generally well, but 
troubles have been experienced in certain cases, in particular for long structures. As 
an alternative approach, this paper implements the method of boundary perturbation 
(BP) to computing the wakefields generated by a Gaussian bunch.1 This method is 
developed by Zhang [3, 4] and, independently, by Chatard-Moulin [5], Cooper [6], 
and their colleagues. Zhang introduces a general format, whereas Chatard-Moulin 
and Cooper consider a special case that is most relevant to accelerators. 

2. THE METHOD OF BOUNDARY PERTURBATION 

The basic idea of Zhang's method is to transform the boundary conditions on the 
perturbed boundaries (which are given) to that on the unperturbed boundaries (which 
are not known), so that the differential equations would then be easier to solve. 

Let z and r be the longitudinal and radial coordinates, respectively. Assume bo(z) 
be an unperturbed smooth boundary, and b(z) the perturbed one. Let 

Eh( z) = b( z) - bo( z ) , (1) 

IThe wakefields of a bunch are sometimes called the wake potentials to be distinguished from 
that of a point charged particle. 
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in which E is a small real number (the perturbation parameter), see Fig. 1. Assume 
that / is a solution (to be found) of some differential equation defined in the (r, z) 
plane: 

D/ = 0 , (2) 

and that its value on the perturbed boundary, /(b), is given. In view of the standard 
perturbation technique, we express / in terms of a series of functions: 

(3) 

in which /(i)s (i = 0,1,2 ... ) are the solutions of Eq. (2) with proper values on the 
unperturbed boundary bo, which are to be discussed below. 

The Taylor series of /(b) is 

8/ (Eh)2 82
/ 

/(b) = /(bo) + (Eh)-8 (bo) + --8 2 (bo) + ... 
r 2 r 

(4) 

This can be rewritten as 

(5) 

Plugging (3) into (5) and collecting terms, we get 

Thus, we may obtain the conditions on the unperturbed boundary bo by the following 
procedure: 

/(O)(bo) /(b) 

/(1)(bo) 
8/CO) 

-h-(bo) 
8r 

/(2)(bo) 
8/(1) h 2 82 / CO) 

(7) -[h-(bo) + ---(bo)] 
8r 2 8r2 

/Ci)(60 ) 
i hq 8q /(i.-q) 

- L- (60 ) q! 8rq q=l 

Once /(i)s are solved for these conditions, / can be obtained from Eq. (3). Strictly 
speaking, Eq. (3) is insignificant unless we can prove that 

@II The perturbation series converge and the limit is exactly /, and 

II /(1) is the 1st order perturbation, /(2) the 2nd order, etc. 
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A general proof is difficult. For several specific differential equations and boundary 
conditions, the proof can be found in [3, 4]. 

This perturbation technique can be easily extended to the case in which the bound­
aries are multi-dimensional. The generalized Eq. (5) takes the form 

(8) 

And Eq. (7) will then be modified accordingly. 

In their studies on beam dynamics in accelerators, Chatard-Moulin, Cooper and 
their colleagues employ basically the same technique to a specific case and get the 
solutions up to the 2nd order. They show that, iIthe following conditions are satisfied, 

(a) The geometry is rotationally symmetric, 

(b) The wall is superconducting, and 

( c) The boundary is periodically perturbed, . 

then j(O) j(l), and j(2) (f stands for either the electric field E or magnetic field B) 
are indeed solvable. [5, 6] 

3. ApPLICATION TO WAKEFIELD CALCULATIONS 

Let the Fourier series of a periodic structure with period L be 

+00 

b(z) = boll + L Cp' d(2,..p/L)zl , (9) 
p=-oo 

with Co = O. Assume a Gaussian bunch of rms length (J traversing this peoridic 
structure with the speed of light. Then one can sho~ that the Chatard-Moulin and 
Cooper approach gives the following longitudinal and transverse wakefields per period: 

00 

p=l 

(10) 

(11) 
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in which 

(12) 

(13) 

Xmn and x~n are the nth root of the Bessel functions Jm and J:n, respectively, and w 
is the complex error function. All lengths are in meters. 

When the wakefields of a bunch are known, the effective impedance seen by the 
bunch can be readily obtained from a Fourier transform. This impedance spectra 
can then be converted to that associated with a point charge (the Green function) 
through a deconvolution. [7J 

4. COMPARISON WITH MESH CALCULATIONS USING TBCI 

An interesting example is the transitions between beam chamber and insertion 
device (ID) section, see Fig. 2. The big tube is the regular beam chamber, while the 
small one represents the vacuum chamber in the ID sections (undulators and/or wig­
glers). They are connected to each other by tapered parts. This kind of structure is 
typical for the so-called third generation of synchrotron radiation sources, which usu­
ally accomodates a number of IDs. For this periodic structure, the Fourier coefficients 
are 

(14) 

with 

ap 0 

bp 

2E sin(PT) 1 
for P = ±1, ±3, ... (15) --. 

7rbo :!!Jl p2 
L 

0 otherwise, 

in which bo is the average radius, E the maximum variation in the radial direction, 
and 9 the length of the tapered part. These parameters are chosen in the test runs 
as follows: 

bo 1.8 ern, 

E 0.2 ern, (16) 

9 0.4 ern, 

L 8.0 ern. 

These choices are based on the following considerations: 

(a) In order to get reliable results from BP, the radial variation should be small 
(in this example E/bo ~ 0.1). 

4 



(b) In order to match the boundary in TBOI calculation, the tapered angle e 
should be either 90° or 45°. The latter is obviously better so far as the 
perturbation method is concerned. 

The longitudinal and transverse wakes for a Gaussian bunch of (T = 1.75cm passing 
this structure are shown in Figs. 3(a)-(b). In the range [-5(T, 2(TJ, BP and TBOI give 
almost identical results. The discrepancies seen near the bunch tail may be attributed 
to the accumulation of numerical errors in TBOL 

However, when the conditions ( a) andj or (b) above are violated, the results will 
be quite different. Let us take the 7-GeV APS storage ring as an example. The 
parameters of this machine are as follows: 

bo 1.2 cnn, 

E 0.8 cnn, (17) 
9 20 cnn. 

The period length L is 27.4 m. But the value of L can be chosen as small as 50 cnn 
without affecting the calculated results, because of the so-called composition rule dis­
cussed in [8]. In this structure, the perturbation is large (Ejbo ~ 0.7). This implies 
that the errors in the results obtained from BP could be substantial. On the other 
hand, the tapered angle e is just about 5°. This means that the matching between the 
TBOI-generated boundary and the real one is poor. Therefore, the wakes computed 
by the two methods in this case could differ from each other in a much more notice~ 
able way. As illustrated in Fig. 4, the peak value of the transverse wake obtained 
from TBOI is about two times larger than that from BP. 

Table 1 is a list of the longitudinal and transverse loss factors for different ge­
ometries, calculated by both BP and TBOI. When the perturbation is small and the 
tapered angle e is 45°, both methods give dose results, as shown in No. I, 2 and 3. 
In No.4, the perturbation becomes large while e remains to be 45°. It seems that BP 
gives underestimated values while TBOI results are more believable. When the value 
of e is decreased to 5°, we see a very slow convergence in TBOI output, as discussed 
in [2]. Therefore, the listed values of the loss factors obtained from TBOI in No.5 
and 6 are overestimated. The actual values should be somewhere in between the BP 
and TBOI results. 

5. CONCLUSIONS 

We have demonstrated that the method of boundary perturbation is a valuable 
tool for computing the wakefields. When the perturbation is small, it gives reasonable 
results. Unlike the field matching method, it can be applied to various types of 
discontinuities, such as shielded bellows, weldments, valves, shielded end conflats, etc. 
In addition, this approach should be useful for proving certain analytical properties 
about the wakefields, loss factors and impedances. For example, we have found in our 
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numerical simulations a power law that can describe the dependence of the transverse 
loss on the tapered angle for the structure shown in Fig. 2. [9] It is plausible to provide 
a proof by means of Eq. (11). This work is in plan. 
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Table L Loss Factors - Boundary Perturbation Method (BP) VB. TBCI 

I

I No. ~I --;--Geom~etry r-;:;--i 

bo / E / 9 (cr.n) I e 

k.l=l (V/pC . m) 

(em) BP I TBCI BP I TBCI 

1 1.8 / 0.2 / 0.4 45° 1.75 0.83E-4 1.3E-4 2.35 2.33 

2 1.8 / 0.2 / 0.4 45° 0.5 0.083 0.094 7.55 7.82 

3 1.6 / 0.4 / 0.8 45° 0.5 0.31 0.36 30.3 31.6 

4 1.2 / 0.8 / 1.6 45° 0.5 0.54 0.87 176 263 

5 1.2 / 0.8 / 20 5° 1.76 lE-8 lE-5 5.0 <11 

6 1.2 / 0.8 / 20 5° 0.58 2E-3 4E-3 15 < 49 
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Fig. L The unperturbed boundary bo and the perturbed one b(z). 
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Fig. 2. A periodic structure which consists of a series of transitions between beam 
chamber and insertion device section. 
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Fig. 3. The wakefields of a Gaussian bunch calculated by BP (solid line) and by TBCI 
(dotted line) for the parameter list (16) in the text. The left side is the bunch head. 
(a) Transverse and (b) Longitudinal. 



Fig. 4. The wakefields of a Gaussian bunch calculated by BP (solid line) and by TBCI 
(dotted line) for the parameter list (17) in the text. The left side is the bunch head. 




